Given, 3l+m+5n=0 ...........(1)
and 6mn−2nl+5lm=0 ..........(2)
From equation (1)m=−(3l+5n)
put the value of m=−(3l+5n) in equation (2) we have
6×−(3l+5n)n−2nl+5l×−(3l+5n)=0
⇒−18ln−30n2−2nl−15l2−25ln=0
⇒−45ln−30n2−15l2=0
⇒l2+3ln+2n2=0
⇒(l+2n)(l+n)=0
So,l+2n=0 ........(3)
and l+n=0 ........(4)
From equations (1) and (3)
3l+m+5n=0
l+2n=0
⇒l2=m−1=n−1 .......(5)
and from equation (1) and (3) i.e
3l+m+5n=0
l+0m+n=0
⇒l2=m−1=n−1 .......(6)
Now angle between lines (5) and (6) is
cosθ=2×1+(−1)×2+(−1)(−1)√22+(−1)2+(−1)2√12+22+(−1)
=2−2+1√4+1+1√1+4+1
=1√6×1√6=16
⇒6cosθ=6×16=1