The correct options are
A tanθ=176
B cosθ=65√13
C sinθ=175√13
Given, θ=cos−1(45)+tan−1(23)
Let cos−1(45)=α⇒cosα=45⇒sinα=35⇒tanα=34
And
tan−1(23)=β⇒tanβ=23⇒sinβ=2√13⇒cosβ=3√13
Therefore, θ=α+β
Gives
sinθ=sin(α+β)=sinαcosβ+cosαsinβ=175√13
cosθ=cos(α+β)=cosαcosβ−sinαsinβ=65√13
tanθ=tan(α+β)=tanα+tanβ1−tanαtanβ=176
cotθ=617