wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If θϵ(π4,π2) and n=11tannθ=sinθ+cosθ then the value of tan2θ is ___ .

Open in App
Solution

n=11tannθ=1tanθ+1tan2θ+1tan3θ+.......

=1tanθ11tanθ

=cosθsinθ1cosθsinθ

=cosθsinθsinθcosθsinθ

=cosθsinθcosθ

=sinθ+cosθ (given)

cosθsinθcosθ=sinθ+cosθ

sin2θcos2θ=cosθ

1cos2θcos2θ=cosθ

2cos2θ+cosθ1=0

2cos2θ+2cosθcosθ1=0

2cosθ(cosθ+1)1(cosθ+1)=0

(2cosθ1)(cosθ+1)=0

cosθ=1 or cosθ=12

if cosθ=1θ=π but π4<θ<π2 so cosθ1

cosθ=12 since θϵ(π/4,π/2)

θ=π3

so tanθ=3tan2θ=3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identity- 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon