If θϵ[−π2,π2] the solution of the equation logsinθ(cos2θ−sin2θ)=2
is given by
By simplification,we get
cos2θ−sin2θ=sin2θ
Or
cos2θ=2sin2θ
1−sin2θ=2sin2θ
3sin2θ=1
sin2θ=13
sinθ=±1√3.
since in lnsinθ <0 is not possible.
Hence
sinθ=1√3
θ=sin−1(1√3)
Consider again
cos2θ=2sin2θ
Or
tan2θ=12
Hence
tanθ=±1√2.
θ=tan−1(1√2) and
θ=tan−1(−1√2) where cosθ<0 and sinθ>0.