If θ=2π7, then the value of tan θ tan 2θ+ tan 2θ tan 4θ+tan 4θ tan θ is
-7
Put θ=A,2θ=B,4θ=c
∴A+B+C=7θ=2π
∴∑ tan A tan B=∑sin A sin B cos Ccos A cos B cos C
But cos (A+B+C)=cos A cos B cos C−∑ sin A sin B cos C ∴∑ sin A sin B cos C=cos A cos B cos C -cos 2π
∴∑tanAtanB=cosAcosBcosC−1cosAcosBcosC=1−1cosAcosBcosC
=1−1cos2π7cos4π7cos8π7=1−1sin23(2π7)23sin2π7
=1-8=-7