If θ∈(π2,3π2), then the value of √4cos4θ+sin22θ+4cotθcos2(π4−θ2) is
A
−2cotθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2cotθ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2cosθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2sinθ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B2cotθ √4cos4θ+sin22θ+4cotθcos2(π4−θ2) Using cos2x=2cos2x−1, we get √4cos4θ+sin22θ+2cotθ(1+cos(π2−θ))=√4cos4θ+(2sinθcosθ)2+2cotθ(1+sinθ)=|2cosθ|√cos2θ+sin2θ+2cotθ(1+sinθ)=|2cosθ|+2cotθ(1+sinθ)=|2cosθ|+2cotθ+2cosθ∵θ∈(π2,3π2)⇒|2cosθ|=−2cosθ So, the expression |2cosθ|+2cotθ+2cosθ=2cotθ