Given that sinθ=cosθ
Simplify the expression in terms of tan.
sinθ=cosθ
sinθcosθ=1
tanθ=1
Since, θ is an acute angle. Therefore, θ=π4.
Substitute θ=π4 in 3tan2θ+2sin2θ+cos2θ−1
3tan2(π4)+2sin2(π4)+cos2(π4)−1. (1)
Since, sin(π4)=cos(π4)=1√2 and tanθ=1.
Simplify equation (1).
⇒3(1)2+2(1√2)2+(1√2)2−1
⇒3+1+12−1
⇒72
Thus, the value of 3tan2θ+2sin2θ+cos2θ−1 is 72.