If θ is an acute angle such that tan2 θ=87, then the value of (1+sin θ)(1−sin θ)(1+cos θ)(1−cos θ) is
A. 74
B. 78
C. 87
D. 6449
The correct option is B : 78
(1+sin θ)(1−sin θ)(1+cos θ)(1−cos θ)
=1−sin2 θ1−cos2 θ
[∵cos2θ+sin2θ=1,so1−sin2 θ=cos2 θ,1−cos2 θ=sin2 θ]
=cos2 θsin2 θ
=1tan2 θ [∵sin θcos θ=tan θ]
=78