Range of |sinx|+|cosx| is [1,√2]
So, y=[|sinx|+|cosx|]=1
⇒ slope of tangent at any point is 0.(due to constant function)
⇒m1=0
x2+y2=5
on differentiating w.r.t. x, we get
dydx=−xy=slope of tangent
at (y=1 ⇒x=±2)
⇒dydx=±2=m2
Let θ be the angle between the curves
∴tanθ=∣∣∣m2−m11+m1m2∣∣∣=|m2|
⇒cosec2θ=54