If θ is angle between curves y=[|sinx|+|cosx|], ([⋅] denotes greatest integer function) and x2+y2=5 then 4cosec2θ is
Open in App
Solution
Range of |sinx|+|cosx| is [1,√2]
So, y=[|sinx|+|cosx|]=1 x2+y2=5
on differentiating w.r.t x, we get dydx=−xy (slope of tangent)
at y=1⇒x=±2 ⇒(dydx=±2) ⇒tanθ=±2 ⇒cosec2θ=54