If θ is the amplitude of a+iba−ib,then tan θ
2aba2−b2
z=a+iba−ib×a+iba+ib⇒ z=a2+i2b2+2abia2−i2b2⇒ z=a2−b2a2+b2+i 2aba2+b2Re (z)=a2−b2a2+b2,Im (z)=2aba2+b2tan α=∣∣Im(z)Re(z)∣∣=2aba2−b2α=tan−1(2aba2−b2)
Since, z lies in the first quadrant. Therefore,
arg(z)=α=tan−1(2aba2−b2)tan θ=2aba2−b2