Given :
3ab+bc=0⋯(i) and a−b+c=0⋯(ii)
⇒b(3a+c)=0
⇒b=0 or 3a+c=0⋯(iii)
putting in (ii)
for b=0⇒a+c=0
⇒a−1=c1
⇒(a1,b1,c1)=(−1,0,1)
for 3a+c=0,i.e.a−1=c3
⇒2a+b=0 from (ii)
hence,
⇒a−1=b2=c3
⇒(a2,b2,c2)=(−1,2,3)
then cosθ=a1a2+b1b2+c1c2√a21+b21+c21√a22+b22+c22
⇒cosθ=1+0+3√2√14=2√7∴7cos2θ−1=3