Given relation of d.r's :
a+b+c=0⋯(i) and 2ac−3bc=0⋯(ii)
⇒c(2a−3b)=0
⇒c=0 or 2a=3b
putting in (i)
For c=0⇒a+b=0
⇒a−1=b1
⇒(a1,b1,c1)=(−1,1,0)
For 2a=3b ;i.e.a3=b2:
⇒3b2+b+c=0 from (i)
⇒b2=c−5⇒(a2,b2,c2)=(3,2,−5)
⇒cosθ=a1a2+b1b2+c1c2√a21+b21+c21√a22+b22+c22⇒cosθ=−3+2+0√2√38⇒76cos2θ=1
∴5−76cos2θ=4