The correct option is A 2√2
Given: DR's (1,−2,1),(4,3,2)
i.e. (1,−2,1)=(a1,b1,c1) and
(4,3,2)=(a2,b2,c2)
For angle θ Finding value of
⇒a1a2+b1b2+c1c2
⇒1×4+(−2)×3+1×2
⇒4−6+2
⇒0
Since, a1a2+b1b2+c1c2=0 Hence, θ=π2
Now finding, secθ2+cosecθ2=secπ4+cosecπ4=√2+√2
⇒secθ2+cosecθ2=2√2