The correct option is D
[0,2π3]
cosθ=ab+bc+caa2+b2+c2=12(a+b+c)2−(a2+b2+c2)a2+b2+c2=12[(a+b+c)2a2+b2+c2−1]
.
From the above expression, cosθ has minimum value when a+b+c=0, , which gives cosθmin=−12
.
Similarly when a=b=c we get (a+b+c)2a2+b2+c2=3, which gives the maximum value of cosθ as cosθmax.=1
Hence cosθ∈[−12,1]
⇒θ∈[0,2π3]