If θ is the angle subtended by the circle S=x2+y2+2gx+2fy=c at the point P(x1,y1) and S1=x21+y21+2gx1+2fy1+c, then
WKT OA =r , O =(−g,−f) and ∠OAP=90o
⟹AP2=OP2–r2
=((x1+g)2+(y1+f)2)–(√g2+f2−c)2
AP2=x21+y21+2gx1+2fy1+c=S1
AP=√S1
In △AOP
cotθ2=APOA=√S1√g2+f2−c