If θ is the exterior angle of a regular polygon of n sides and α is constant, then find the value of sin α + sin (α+θ) + sin (α+2θ) . . . . . up to n terms
Since θ is the exterior angle of a regular polygon, each exterior angle of n sided regular polygon = 360∘n.
Sum of the above given sine series.
= sinnθ2sinθ2.sin(α+(n−1)θ2)
θ = 360∘n
Sum = sinn×360n.2sin360n.2×sin(α+(n−1)×3602)
= sin180∘sin180∘n.sin(α+(n−1)180∘)
We know, sin 180∘ = 0
= 0sin180∘n×sin(α+(n−1)×180∘)
= 0