wiz-icon
MyQuestionIcon
MyQuestionIcon
7
You visited us 7 times! Enjoying our articles? Unlock Full Access!
Question

If θ lies in the first quadrant and cosθ=817, then prove that
cos(π6+θ)+cos(π4θ)+cos(2π3θ)
=(312+12)2317

Open in App
Solution

We have,
cosθ=817
sinθ=1cos2θ=164289
=225289
=1517
Now, cos(π6+θ)+cos(π4θ)+cos(2π3θ)
=[cosπ6cosθsinπ6sinθ]+[cosπ4cosθ+sinπ4sinθ]+[cos2π3cosθ+sin2π3sinθ]
=[cosπ6+cosπ4+cos2π3]cosθ+sinθ[sinπ6+sinπ4+sin2π3]
=[32+12+cos(π2+π6)]×817+1517×[12+12+sin(π2+π6)]
=[32+12sinπ6]×817+1517×[12+12+cosπ6]
=[32+1212]×817+1517×[12+12+32]
=[312+12]×817+1517×[312+12]
=(312+12)(817+1517)
=(312+12)(8+1517)
=(312+12)×2317
cos(π6+θ)+cos(π4θ)+cos(2π3θ)=(312+12)×2317
Hence proved.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon