We have,
cosθ=817
∴sinθ=√1−cos2θ=√1−64289
=√225289
=1517
Now, cos(π6+θ)+cos(π4−θ)+cos(2π3−θ)
=[cosπ6cosθ−sinπ6sinθ]+[cosπ4cosθ+sinπ4sinθ]+[cos2π3cosθ+sin2π3sinθ]
=[cosπ6+cosπ4+cos2π3]cosθ+sinθ[−sinπ6+sinπ4+sin2π3]
=[√32+1√2+cos(π2+π6)]×817+1517×[−12+1√2+sin(π2+π6)]
=[√32+1√2−sinπ6]×817+1517×[−12+1√2+cosπ6]
=[√32+1√2−12]×817+1517×[−12+1√2+√32]
=[√3−12+1√2]×817+1517×[√3−12+1√2]
=(√3−12+1√2)(817+1517)
=(√3−12+1√2)(8+1517)
=(√3−12+1√2)×2317
∴cos(π6+θ)+cos(π4−θ)+cos(2π3−θ)=(√3−12+1√2)×2317
Hence proved.