If θ lies in the first quadrant and cos θ=817, then the value of cos(30∘+θ)+cos(45∘−θ)+cos(120∘−θ) is
(√3−12+1√2)2317
cos θ=817⇒sin θ=√(17)2−8217=1517 Now the given expression is equal to
cos30∘ cos θ−sin 30∘ sin θ+cos 45∘cos θ+sin 45∘ sin θ+cos120∘ cos θ+sin120∘sin θ=cos θ(cos 30∘+cos 45∘+cos 120∘)−sin θ(sin 30∘−sin 45∘−sin 120∘)
=817(√37+1√2)−1517(12−12−√32)=(√3−12+1√2)2317