If θ lies in the second quadrant, then the value of √1−sinθ1+sinθ + √1+sinθ1−sinθ.
-2 sec
Solution: √1−sinθ1+sinθ + √1+sinθ1−sinθ
To simplify the above expression, we can rationalize the above expression.
√1−sinθ1+sinθ×(1−sinθ)(1−sinθ) + √1+sinθ1−sinθ×(1+sinθ)(1+sinθ)
√(1−sinθ)21−sin2θ + √(1+sinθ)21−sin2θ
√(1−sinθ)2cos2θ + √((1+sinθ)2cos2θ) {We know sin2θ+cos2θ=1,1−sin2θ=cos2θ}
= 1−sinθ−cosθ + 1+sinθ−cosθ
√cos2θ = -cosθ, √x2 = |x|
If |theta is in the II quadrant, then the values of cosθ will be negative.
Expression = 1−sinθ−cosθ + 1+sinθ−cosθ = 2−cosθ = -2secθ