If θ=sin−1x+cos−1x−tan−1x, x≥0 then the smallest interval in which θ lies is
π4≤θ≤π2
sin−1x+cos−1x is defined for xϵ[−1,1] & tan−1x for xϵR
But, given x≥0
∴θ=sin−1x+cos−1x−tan−1x, 0≤x≤1
⇒θ=π2−tan−1x
Now 0≤x≤1
⇒0≤tan−1x≤π4
⇒0≤π2−θ≤π4
⇒−π2≤−θ≤−π4
=π4≤θ≤π2