If u=log(x3+y3+z3-3xyz), then (∂u/∂x+∂u/∂y+∂u/∂z)(x+y+z)=
0
1
2
3
Explanation for the correct answer:
Find the value of ∂u∂x+∂u∂y+∂u∂z(x+y+z) :
Given,
u=log(x3+y3+z3-3xyz)
Now, differentiate partially with respect to x,yand z
∂u∂x=3x2–3yz(x3+y3+z3–3xyz)...(i)∂u∂y=(3y2–3xz)(x3+y3+z3–3xyz)...(ii)∂u∂z=(3z2–3xy)(x3+y3+z3–3xyz)...(iii)
Adding the above three equations,
∂u∂x+∂u∂y+∂u∂z=(3x2+3y2+3z2–3yz–3xz–3xy)(x3+y3+z3–3xyz)=3(x2+y2+z2–yz–xz–xy)(x3+y3+z3–3xyz)
We know,
(x3+y3+z3–3xyz)=(x+y+z)(x2+y2+z2–yz–xz–xy)
Then,
∂u∂x+∂u∂y+∂u∂z=3(x2+y2+z2–yz–xz–xy)(x+y+z)(x2+y2+z2–yz–xz–xy)=3(x+y+z)⇒∂u∂x+∂u∂y+∂u∂z(x+y+z)=3
Hence, the correct option is D.
If u=log(x3+y3+z3-3xyz), then ∂u∂x+∂u∂y+∂u∂z(x+y+z)=