To find:
tanθ If θ=∑∞k=1tan−1(12k2)
Let:
12k2=24k2
Add and Subtract 1 in Denominator and simplifying using identity : a2−b2=(a+b)(a−b)
12k2=24k2=(2k+1)−(2k−1)1+4k2−12
12k2=(2k+1)−(2k−1)1+(2k+1)(2k−1)
As we know, tan−1(a)−tan−1(b)=tan−1(a−b1+ab)
Let: a=(2k+1) and b=(2k−1)
Thus, we have:
∑∞k=1tan−1(2k+1)−(2k−1)1+(2k+1)(2k−1)=∑∞1[tan−1(2k+1)−tan−1(2k−1)]
Here we observe: 2k+1 is (k+1)th term of 2k−1
So, by using "Method of Difference"
i.e (a3−a1)+(a5−a3)+(a7−a5)+...+(a2n+1−a2n−1)+.......
Noting that all terms except a1 and a2n+1 will cancel
As when k tends to ∞ , 2k+1 tends to ∞ and a1 remains, we get
∑∞k=1[tan−1(2k+1)−tan−1(2k−1)]=f(∞)−f(1)
Since:
tan−1(1)=π4
and:
limk→∞tan−1(2k+1)=π2
We finally obtain:
∑∞k=1tan−1(12k2)=π2−π4=π4
Thus,
θ=π4
tan(π4)=1