1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Differentiation Using Substitution
If θ = tan ...
Question
If
θ
=
tan
−
1
(
2
tan
2
θ
)
−
1
2
sin
−
1
(
3
sin
2
θ
5
+
4
cos
2
θ
)
then find the sum of all possible values of
tan
θ
Open in App
Solution
t
a
n
θ
=
2
tan
2
θ
−
3
tan
θ
1
+
2
tan
2
θ
(
3
tan
θ
)
=
2
tan
3
θ
−
3
(
1
+
6
tan
θ
)
tan
θ
∴
4
tan
3
θ
+
tan
2
θ
+
3
=
0
⇒
tan
θ
=
−
1
Or
4
tan
2
θ
−
3
tan
θ
+
3
=
0
Δ
=
9
−
48
⟨
0
tan
θ
=
−
1
corresponds to
tan
β
2
=
3
tan
θ
=
−
3
but
β
E
(
−
π
2
,
π
2
)
⇒
tan
β
2
⟩
0
∴
tan
θ
can't be
−
1
∴
tan
θ
can be
0
,
1
,
−
2
Suggest Corrections
0
Similar questions
Q.
The general values of
q
for which
θ
=
t
a
n
−
1
(
2
t
a
n
2
θ
)
−
1
2
s
i
n
−
1
(
3
s
i
n
2
θ
5
+
4
c
o
s
2
θ
)
holds true,
Q.
The value of \theta for which
θ
=
t
a
n
−
1
(
2
t
a
n
2
θ
)
−
1
2
s
i
n
−
1
(
3
s
i
n
2
θ
5
+
4
s
i
n
2
θ
)