The correct option is A 1−√3:−2:1+√3
Given, b=2aca+c
⇒b2=aca+c=k (say)⇒b=2k, ac=k(a+c)
Also, a2,b2,c2 are in A.P., so
2b2=a2+c2=(a+c)2−2ac⇒(a+c)2−2k(a+c)−8k2=0⇒k=2k±√36k22⇒a+c=4k,−2k
When a+c=4k, we get
ac=4k2⇒a(4k−a)=4k2⇒a2−4k⋅a+4k2=0⇒a=2k, c=2k
Which is not possible as numbers are distinct.
When a+c=−2k, we get
ac=−2k2⇒a(−2k−a)=−2k2⇒a2+2k⋅a−2k2=0⇒(a+k)2=3k2⇒a=−k(1±√3)
Now,
a=−k(1+√3)⇒c=−k(1−√3)a=−k(1−√3)⇒c=−k(1+√3)
So, a:b:c is
−k(1+√3):2k:−k(1−√3) or −k(1−√3):2k:−k(1+√3)∴a:b:c=1+√3:−2:1−√3 or 1−√3:−2:1+√3