It is given that lines y=m1x+c1 __(1)
y=m2+c2 __(2)
y=m3x+c3 __(3) are concurrent
so, finding point of intersection of lines (1) & (3) subtracting (1) from (2)
y−y=(m2+c1)−(m2x+c2)⇒0=m1x+c1=m2x−c2
−m1x+m2x=c1−c2⇒(−m1+m2)=c1−c2
x(m2−m1)=c1−c2⇒x=c1−c2m2−m1
Putting value of x in equation (1)
y=m1x=9
y=m1(c1+c2m2−m1)+c1⇒y=m1(c1−c2)m2−m1+c1
So, POI of line (1) & (2) is (c1−c2m2−m1,m1(c1−c2)m2m1+c1)
Since 3 lines are concurrent point (c1−c2m2−m1,m1(c1−c2)m2−m1+c1) will satisfy the equation of 3rd line
Now putting x=c1−c2m2−m1&y=m1(c1−c2)m2−m1+c1 in equation (3)
y=m3x+c3
⇒m1(c1−c2)m2−m1+c1=m3(c1−c3m2−m1)+c3
⇒m1(c1−c2)+c1(m1−m1)m2−m1=m3(c1−c2)+c3(m2−m1)m2−m1
⇒m1(c1−c2)+c1(m2−m1)=m3(c1−c2)+c3(m2−m1)
⇒−[m1(c2−c3)+m2(c3−c1)+m3(c1−c2)]=0
⇒m1(c2−c3)+m2(c3−c1)+m3(c1−c2)]=0
Hence proved