The correct options are
B 1
C 3+2√2
D 3−2√2
Let the numbers be a−d,a,a+d
Now, (a−d)2,a2,(a+d)2 are in G.P., so
a4=(a−d)2×(a+d)2 (∵B2=AC)⇒a4=(a2−d2)2⇒d4−2a2d2=0⇒d2(d2−2a2)=0⇒d2=0,2a2⇒d=0,±√2a
When d=0,r=1
When d=√2a,
r=a2(a−√2a)2=13−2√2⇒r=3+2√2
When d=−√2a,
r=a2(a+√2a)2=13+2√2⇒r=3−2√2
Hence, the possible value(s) of r=1, 3±2√2