The correct option is C (∑a21)(∑b21)4
|c|=1, we have |c|2=1orc21+c22+c23=1 ....(i)
Again, Since c⊥a and c⊥b, we have c.a =0
⇒a1c1+a2c2+a3c3=0 ....(ii)
and c. b=0⇒b1c1+b2c2+b3c3=0 .....(iii)
Also since angle between a and b is π6, we have a, b = a1b1+a2b2+a3b3
⇒|a||b|cosπ6=a1b1+a2b2+a3b3
⇒34(a21+a22+a23)(b21+b22+b23)=(a1b1+a2b2+a3b3)2
Now,
∣∣
∣∣a1a2a3b1b2b3c1c2c3∣∣
∣∣2=∣∣
∣∣a1a2a3b1b2b3c1c2c3∣∣
∣∣∣∣
∣∣a1a2a3b1b2b3c1c2c3∣∣
∣∣
=∣∣
∣
∣∣a21+a22+a23a1b1+a2b2+a3b30b1a1+b2a2+b3a3b21+b22+b230001∣∣
∣
∣∣
(Using (i), (ii), and (iii))
=14(a21+a22+a23)(b21+b22+b23), (Using(iv))
=(∑a21)(∑b21)4
where ∑a21=a21+a22+a23and∑b21=b21+b22+b23