If three positive real numbers x,y,z are in A.P such that xyz = 4, then what will be the minimum value of y?
Open in App
Solution
Since, x,y and z are positive real numbers, x+y+z3≥(xyz)13 x,y and z are in AP; ⇒ y - d, y, y+d ⇒y−d+y+y+d3≥(xyz)13 ⇒3y3≥(xyz)13 (Since, xyz=4) ⇒y≥(4)13 ⇒ Minimum value of y is (4)13.