The correct options are
A 1−√3:−2:1+√3
C 1+√3:−2:1−√3
By hypothesis,
q=2prp+r
⇒q2=prp+r=k(say)
⇒q=2k,pr=k(p+r) ....... (i)
Also, p2,q2,r2 are in A.P.
∴2q2=p2+r2=(p+r)2−2pr
⇒8k2=(p+r)2−2k(p+r) ...... From (i)
⇒(p+r)2−2(p+r)k−8k2=0
⇒p+r=4k,−2k
⇒p+r=4k,pr=4k2 ...... [∵pr=k(p+r)]
and we get (p−r)2=(p+r)2−4pr=0
∴p=r
This is against the hypothesis
∴p+r=−2k,pr=−2k2 ...... [∵pr=k(p+r)]
Now, (p−r)2=12k2⇒p−r=±2√3k
Combine it with p+r=−2k to get
p=(−1±√3)k and r=(−1∓√3)k
∴p:q:r::−1±√3:2:−1∓√3
or p:q:r::−1∓√3:2:1±√3