Let P(x)=x4−x3−3x2+3x
Given, 0,√3,−√3 are three zeroes, so
x=0,
x=√3 and x=−√3
⇒(x−√3)=0 and x+√3=0
Therefore x,(x+√3) and (x−√3) are factors of P(x)
Here, x(x+√3)(x−√3) will also be the factor of P(x).
Or, x(x2−3) will also be the factor of P(x).
then x3−3x)¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯x4−x3−3x2+3x(x−1
x4−3x2 − + ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯ −x3+3x −x3+3x + − ––––––––––––– 0
quotient = (x - 1)
So fourth zero ⇒x−1=0
x = 1
Hence four zeroes will be 1,0,√3,−√3.