wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Tn=sinn θ+cosn θ, prove that

(i) T3-T5T1=T5-T7T3

(ii) 2 T6-3 T4+1=0

(iii) 6T10-15 T8+10 T6-1=0

Open in App
Solution

(i) LHS:

T3-T5T1=sin3θ+cos3θ-sin5θ+cos5θsinθ+cosθ= sin3θ-sin5θ+cos3θ-cos5θsinθ+cosθ=sin3θ1-sin2θ+cos3θ1-cos2θsinθ+cosθ=sin3θ.cos2θ+cos3θ.sin2θsinθ+cosθ=sin2θ.cos2θsinθ+cosθsinθ+cosθ=sin2θ.cos2θ

RHS:
T5-T7T3=sin5θ+cos5θ-sin7θ+cos7θsin3θ+cos3θ=sin5θ-sin7θ+cos5θ-cos7θsin3θ+cos3θ=sin5θ1-sin2θ+cos5θ1-cos2θsin3θ+cos3θ=sin5θcos2θ+cos5θsin2θsin3θ+cos3θ=sin2θ.cos2θ

LHS = RHS

Hence proved.

(ii) LHS:

2T6-3T4+12sin6θ+cos6θ-3sin4θ+cos4θ+12sin2θ+cos2θsin4θ+cos4θ-sin2θcos2θ-3sin4θ+cos4θ+12.1.sin4θ+cos4θ-sin2θcos2θ-3sin4θ+cos4θ+12sin4θ+2cos4θ-2sin2θcos2θ-3sin4θ-3cos4θ+1-sin4θ+cos4θ-sin2θcos2θ+1-(sin2θ+cos2θ)2+1-1+10

Hence proved.

(iii) LHS:

6T10-15T8+10T6-16sin10θ+cos10θ-15sin8θ+cos8θ+10sin6θ+cos6θ-1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon