The correct option is C 3√3
In a △ABC, we know that
tanA+tanB+tanC=tanAtanBtanC ⋯(1)
As tanA,tanB,tanC>0, so using
A.M.≥G.M., we get
tanA+tanB+tanC≥3(tanAtanBtanC)1/3
From equation (1),
tanA+tanB+tanC≥3(tanA+tanB+tanC)1/3⇒(tanA+tanB+tanC)2/3≥3⇒tanA+tanB+tanC≥33/2∴tanA+tanB+tanC≥3√3
Hence, the minimum value of the given expression is 3√3.