If △ABC∼△PQR and ∠B=∠R=60∘, then find ∠ RPQ.
Given: △ABC∼△PQR
∠B=∠R=60∘
Since △ABC∼△PQR,
∠A=∠P
∠B=∠Q
∠C=∠R
⇒ ∠Q=∠B=60∘
and ∠C=∠R=60∘
Now, ∠A=180∘−∠B−∠C
(Since sum of interior angles of a triangle is 180∘)
⇒ ∠A=180∘−∠B−∠C
⇒ ∠A=180∘−60∘−60∘
⇒ ∠A=60∘
∴∠RPQ=∠A=60∘