If △=∣∣
∣
∣
∣
∣
∣
∣∣sinπcos(x+π4)tan(x−π4)sin(x−π4)0ln(xy)cot(x+π4)ln(yx)0∣∣
∣
∣
∣
∣
∣
∣∣, for x∈(0,π)−{π4,3π4},y>0. Then the value of (△+9)=
Open in App
Solution
Using : cos(x+π4)=sin[π2−(x+π4)]=sin(π4−x)=−sin(x−π4)
and cot(x+π4)=tan[π2−(π4+x)]=tan(π4−x)=−tan(x−π4)
and ln(xy)=−ln(yx)
So, determinant becomes : △=∣∣
∣
∣
∣
∣
∣
∣∣0−sin(x−π4)tan(x−π4)sin(x−π4)0−ln(yx)−tan(x−π4)ln(yx)0∣∣
∣
∣
∣
∣
∣
∣∣
Which is determinant of odd order skew-symmetric matrix. ⇒△=0