The correct option is D 7
Putting r=1,2,3,...,n and using the formula
∑1=n
and ∑r=n(n+1)2
∑(2r−1)=1+3+5+....=n2
Therefore, n∑r=1△r=∣∣
∣
∣∣nnnn(n+1)n2+n+1n2+nn2n2n2+n+1∣∣
∣
∣∣=56
Applying C1→C1−C3,C2→C2−C3, we get
∣∣
∣
∣∣00n01n2+n−n−1−n−1n2+n+1∣∣
∣
∣∣=56
⇒n(n+1)=56
⇒n2+n−56=0
⇒(n+8)(n−7)=0
⇒n=7,(n≠−8).