The correct options are
B m<−√3−1
C m>√3−1
Point P(4,4) lies on the parabola.
Let Q(x1,y1) be a point on the parabola.
Let the point of intersection of the line y=mx with the chords be (a,ma), then
a=4+2x13
⇒x1=3a−42
and ma=4+2y13
⇒y1=3ma−42
As (x1,y1) lies on the curve
⇒(3a−4)2=8(3ma−4)
⇒3a2−8(1+m)a+16=0
For two distinct chords, D>0
⇒(1+m)2−3>0
⇒(m+1+√3)(m+1−√3)>0
⇒m>√3−1 or m<−√3−1