In △POX and △QOX
OP=OQ radius of circle C1
XP=XQ radius of circle C2
OX=OX(common)
∴△POX≅△QOX by SSS congruence rule
∠POX=∠QOX by C.P.C.T ..(1)
Also, In △POR and △QOR
OP=OQ radius of circle C1
∠POR=∠QOR since ∠POX=∠QOX
OR=OR (common)
∴△OPX≅△OQX by SAS congruence rule
PR=QR by CPCT
and ∠PRO=∠QRO by CPCT ....(2)
Since PQ is a line
∠PRO+∠QRO=180∘ (linear pair)
∠PRO+∠PRO=180∘ from (2)
⇒2∠PRO=180∘
⇒∠PRO=180∘2=90∘
∴∠QRO=∠PRO=90∘
Also, ∠PRX=∠QRO=90∘ (vertically opposite angles)
∠QRX=∠PRO=90∘ (vertically opposite angles)
Since ∠PRO=∠QRO=∠PRX=∠QRX=90∘
∴,OX is the perpendicular bisector of PQ