The correct option is B 1a2+1b2=1c2
Let S1:x2+y2−2ax+c2=0
C1≡(a,0) and r1=√a2−c2
and S2:x2+y2−2by+c2=0
C2≡(0,b) and r2=√b2−c2
C1C2=√(a−0)2+(0−b)2
⇒C1C2=√a2+b2
and r1+r2=√a2−c2+√b2−c2
Since the two circles touch each other externally, we have
C1C2=r1+r2
⇒√a2+b2=√a2−c2+√b2−c2
⇒a2+b2=a2−c2+b2−c2+2√a2−c2√b2−c2
⇒c2=√a2−c2√b2−c2
⇒c4=a2b2−c2(a2+b2)+c4
⇒a2b2=c2(a2+b2)
⇒1a2+1b2=1c2