wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If two distinct tangents can be drawn from the point (α,2) on different branches of the hyperbola
x29y216=1, then

A
|α|<32
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
|α|>23
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
|α|>3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
α=1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A |α|<32


For hyperbola x29y216=1 to have two distinct tangents on different branches the point should lie in the region R1 and R3
So from (α,2) two tangents can be drawn if it lies in between A and B [where A and B are point of intersection asymptotes with y=2
Equation of asymptotes are x29y216=0
(x3y4)(x3+y4)=0
4x=±3y
solve both the asymptotes with y=2, we get x=±32
32<α<32
|α|<32

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon