Given: A circle with center O. Its two equal chords AB and CD intersect at E.
To prove: AE = DE and CE =BE
Construction: Draw OM⊥AB and ON⊥CD. Join OE.
Proof: In ΔOME and ΔONE
∠M=∠N=90∘
OM=ON (Equal chords of a circle are equidistant from the centre)
OE=OE (Common)
∴ ΔOME≅ΔONE (R.H.S)
[2 Marks]
⇒ME=NE (C.P.C.T)
⇒AM+ME=DN+NE (∵AM=DN=12AB=12CD)
⇒AE=DE
⇒AB−AE=CD−DE (Given AB=CD)
⇒BE=CE
[1 Mark]