3l+m+5n=0−−−−−(i)6mn−2nl+5lm=0−−−−−−(ii)so,from6n(equ(i)..........m=−3l−5nsub′m′inequ(ii)⇒6n(−3l−5n)−2nl+5l(−3l−5n)=0⇒−18nl−30n2−2nl−15l2−25nl=0⇒18nl+30n2+15l2+27nl=0⇒45nl+30n2+15l2=0⇒2n2+3nl+l=0(2n+l)(l+n)=0∴l=−n,l=−2nIfl=−n,fromequ(i)⇒−3n+m+5n=0⇒m+2n=0,n=−m2then,l1=−m2=−n1ifl=−2n,,fromequ(ii)⇒6mn−2n(−2n)+5(−2n)m=0⇒6mn+4n2−10mn=0⇒4n2−4mn=0,n−m=0∴n=ml−2=m1=n1cosθ=|−2+2−1|√1+4+1√4+1+1=166=cos−1(16)∴|12cosθ|=12(16)=2