The correct option is C 1
(x−1)(2x2−3x+4)=0 can be written as 2x3−5x2+7x−4=0
Let α,β,1 be the roots of the equation (x−1)(2x2−3x+4)=0
Then α+β+1=−−52
⇒α+β=32
Also, αβ=2
Now, let α,β,γ be the roots of the equation x3+(a+1)x2+(a+b)x+b=0
Then αβγ=−b
⇒γ=−b2
Also, α+β+γ=−(a+1)
⇒b=2a+5 ......(i)
Also, αβ+βγ+γα=a+b
⇒7b+4a=8 ......(ii)
Solving (i) and (ii), we get
⇒a=−32,b=2
⇒2(a+b)=1