The correct option is B −1,2,6
Let the roots be a,3a,b.
The Sum of the roots is =4a+b=7 .. (i)
(a)(3a)+(a)(b)+(3a)(b)=4
⇒3a2+4ab=4 .. (ii)
The Product of roots is 3a2b=−12 .. (iii)
Substituting the value of b from (i) in (ii), we get ,
3a2+4a(7−4a)=4
⇒13a2−28a+4=0
⇒(a−2)(13a−2)=0
⇒a=2 or a=213
For a=2 , b=−1 (By substituting in (i)). This satisfies equation (iii).
For a=213, b=8313, this does not satisfy equation (iii).
Hence, the roots are (−1,2,6).