If two tangents can be ddrawn to the different branches of hyperbola x21−y24=1 from the point (α,α2) then
We have,
x21−y24=1
x212−y222=1
Comparing that x2A2−y2B2=1
We get,
A=1,B=2
Then, we know that equation of tangent in parabola,
y=mx±√A2m2−B2
As tangent passes through the point (a,a2)
Now,
a2=am±√m2−4
⇒a2−am=±√m2−4
Squaring both side and we get,
⇒(a2−am)2=m2−4
⇒a4+a2m2−2a3m=m2−4
⇒m2−4−a4−a2m2+2a3m=0
⇒m2(1−a2)+2a3m−(a4+4)=0
For two real distinct values of m, we get
(2a3)2−4(1−a2){−(a4+4)}>0
⇒a6−(1−a2)(a4+4)>0
⇒a4−4a2+4>0
⇒a4−4a2+22>0
⇒(a2−2)2>0
Now, which is always greater than zero, except when
a2−2=0
⇒a=±√2
⇒a≈±1.414
Hence, α∈(2,−∞) the answer.