Since (α,β) lies on the given ellipse, therefore 25α2+4β2=1 ⋯(1)
Tangent to the parabola, y=mx+1m passes through (α,β).
So, αm2−βm+1=0 has roots m1 and 4m1.
∴m1+4m1=βα and m1⋅4m1=1α
Gives that 4β2=25α ⋯(2)
From (1) and (2), we get
25(α2+α)=1
⇒α2+α=125
Now, (10α+5)2+(16β2+50)2
=25(2α+1)2+2500(2α+1)2
=25×101(4α2+4α+1)
=25×101(425+1)
=29×101=2929