If two tangents to y2=4ax make angles θ1,θ2 with positive x− axis such that cosθ1⋅cosθ2=k, then the locus of their point of intersection is
A
x2=k2[(x−a)2+y2]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x2=k2[(x+a)2+y2]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x2=k2[(x−a)2−y2]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x2=[(x+a)2+y2]
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ax2=k2[(x−a)2+y2] Equation of tangent y=mx+am⇒m2x−my+a=0 So, m1+m2=tanθ1+tanθ2=yxm1⋅m2=tanθ1⋅tanθ2=ax Now, cosθ1⋅cosθ2=k⇒secθ1⋅secθ2=1k⇒sec2θ1⋅sec2θ2=1k2⇒(1+tan2θ1)⋅(1+tan2θ2)=1k2⇒[1+(tanθ1+tanθ2)2−2tanθ1tanθ2+tan2θ1⋅tan2θ2]=1k2
Let the required point be (x1,y1), so [1+y21x21−2ax1+a2x21]=1k2⇒k2[(x1−a)2+y21]=x21