If two vertices of an equilateral triangle are (3, 0) and (6, 0), find the third vertex.
OR
Find the value of k, if the points P (5, 4), Q (7, k) and R (9, -2) are collinear.
Let the two given vertices be A (3, 0) and B (6, 0).
Let the coordinates of the third vertex be C (x, y).
It is given that the triangle ABC is equilateral.
Therefore, AB = BC = CA (Sides of an equilateral triangle)
⇒√(6−3)2+(0−0)2=√(x−6)2+(y−0)2=√(x−3)2+(y−0)2
⇒9=(x−6)2+y2=(x−3)2+y2
∴(x−6)2+y2=(x−3)2+y2
⇒−12x+36=−6x+9
⇒−6x=−27
⇒x=92
Now, y2+(x−6)2=9
⇒y2+(92−6)2=9 (∴ x=92)
⇒y2=9−94
⇒y2=274
⇒y=±√274=±3√32
Thus, the coordinates' of the third vertex are (92,3√32) or (92−3√32)
OR
Let Q(7,k) divide the line segment joining P(5,4) and (9,-2) in the ratio λ : 1
∴ Coordinates of the Point Q=(9λ+5λ+1,−2λ+4λ+1)
∴9λ+5λ+1=7 and k=−2λ+4λ+1
⇒9λ+5=7λ+7
⇒2λ=2
⇒=λ=1
Now, k=−2λ+4λ+1
⇒k=−2×1+41+1
⇒k=−2+42
⇒k=1
Thus, the value of k is 1