If two vertices of an equilateral triangle be (0,0),(3,√3), find the third vertex. [4 MARKS]
Formula: 1 Mark
Steps: 2 Marks
Answer: 1 Mark
O(0 , 0) and A(3,√3) be the points and let B ( x, y) be the third vertex of equilateral ΔOAB
Then,
OA = OB = AB
⇒OA2=OB2=AB2
We have OA2=(3−0)2+(√3)−0)2=12,
OB2=x2+y2
and, AB2=(x−3)2+y−√3)2
⇒AB2=x2+y2−6x−2√3y+12
∴OA2=OB2=AB2
⇒OA2=OB2 and OB2=AB2
⇒x2+y2=12
and, x2+y2=x2+y2−6x−2√3y+12
⇒x2+y2=12 and 6x+2√3y=12
⇒x2+y2=12 and 3x+√3y=6
⇒x2+(6−3x√3))2=12
[∵3x+√3y=6 ∴y=6−3x√3]
We have,
⇒3x2+(6−3x)2=36
⇒12x2−36x=0
⇒x=0,3
∴x=0⇒(√3)y=6
⇒y=6√3=2√3 [Putting x =0 in (3x+√3y)=6 ]
and , x=3⇒9+(√3)y=6
⇒y=6−9√3=−√3 [Putting x = 3 in 3x+(√3y)=6]
Hence . the coordinates of the third vertex b are (0,2√3) or (3,−√3)