If two vertices of an equilateral triangle be (0,0), (3,√3), find the third vertex.
Open in App
Solution
O(0,0) and A(3,√3) be the given points and let B(x,y) be the third vertex of equilateral △OAB. Then,
OA=OB=AB
⇒OA2=OB2=AB2
Wehave,OA2=(3−0)2+(√3−0)2=12, OB2=x2+y2 and,AB2=(x−3)2+(y−√3)2 ⇒AB2=x2+y2−6x−2√3y+12 ∴OA2=OB2=AB2 ⇒OA2=OB2andOB2=AB2 ⇒x2+y2=12 and,x2+y2=x2+y2−6x−2√3y+12 ⇒x2+y2=12and6x+2√3y=12 ⇒x2+y2=12and3x+√3y=6 ⇒x2+(6−3x√3)2=12[∵3x+√3y=6∴y=6−3x√3] ⇒3x2+(6−3x)2=12 ⇒12x2−36x=0 ⇒x=0,3 ∴x=0⇒√3y=6⇒y=6√3=2√3[Puttingx=0in3x+√3y=6] and,x=3⇒9+√3y=6⇒y=6−9√3=−√3[Puttingx=3in3x+√3y=6] Hence, the coordinates of the third vertex B are (0,2√3)or,(3,−√3).